

Data Sufficiency

☑ Sufficiency Test

This simple chart is a surefire way to effectively and efficiently tackle each data sufficiency problem. Memorize the answer codes (YN = A, NY = B) so that you you can quickly answer each question without having to refer to the instructions.

Statement 1 Sufficient?	Statement 2 Sufficient?	Both Sufficient?	Answer
Y	N		/ YN = A
Ν	Y		NY = B
Ν	N	Y	NNY = C
Y	Y		\bigvee YY = D
Ν	Ν	Ν	NNN = E

☑ Two types of questions:

1) Information-seeking: "What is...?" "How many...?"

Usually, the two statements are used to find the same answer to a given question. 2) Verification: "Is this true?"

Usually, the two statements are used to verify the validity of a given question.

☑ Very rare, but possible trick questions

Type 1) Information seeking: Each statement provides sufficient information to answer the question, though they may lead to different answers. (YY = D type)

Example: What is a^2 ? (**YY** = **D** type)

(1)
$$a = 2$$

(2) $a = 3$

Statements 1 and 2 provide conflicting answers: $a^2 = 4$ or 9. However, they do give sufficient information to solve the problem.

Type 2) Verification: At least one statement provides sufficient information to disprove a given question. (YY=D or NNY=C type)

Example: Is $a^2 = b^2$? (YY = D type)

(1) a = 2 and b = -2

(2)
$$a = 2$$
 and $b = 1$

Statement 1 proves the given question: $2^2 = 4 = (-2)^2$, while Statement 2 disproves it: $2^2 = 4$ and $1^2 = 1$. Therefore, while one statement verifies the given question and the other disproves it, they both provide sufficient information to find an answer.

Example: Is $a^2 = b^2$? (NNY= C type)

(1)
$$a = 2$$

(2) $b = 1$

Statements 1 and 2 together are sufficient to disprove the question.

☑ Data sufficiency questions can involve any of the Algebra and Geometry topics covered in this book. However, a study on over 100 actual GMAT questions yielded the most **common topics** as outlined below:

approach to sample questions

Statement (1) is a = 5, which is not sufficient alone to find the answer. Statement (2) is b = 2, which is not sufficient alone to find the answer. However, statements (1) and (2) together can provide enough information to find the answer to the question: a + b.

Therefore, the answer is NNY = (C).

Statement 1	Statement 2	Both	Answer
Sufficient?	Sufficient?	Sufficient?	
Ν	Ν	Y	NNY = C

A1

The set of x values satisfying statement (1) are 12, 24, 36, 48, ..., which alone is enough to answer the question.

The set of y values satisfying statement (2) are 9, 18, 27, 36, ..., which alone is not enough to answer the question.

Therefore, the answer is YN = (A).

Statement 1	Statement 2	Both	Answer
Sufficient?	Sufficient?	Sufficient?	
Y	N		$\mathbf{Y}\mathbf{N} = \mathbf{A}$